Sequence-function relationships provide new insight into the cleavage site selectivity of the 8–17 RNA-cleaving deoxyribozyme
نویسندگان
چکیده
Many sequence variations of the 8-17 RNA-cleaving deoxyribozyme have been isolated through in vitro selection. In an effort to understand how these sequence variations affect cleavage site selectivity, we systematically mutated the catalytic core of 8-17 and measured the cleavage activity of each mutant deoxyribozyme against all 16 possible chimeric (RNA/DNA) dinucleotide junctions. We observed sequence-function relationships that suggest how the following non-conserved positions in the catalytic core influence selectivity at the dinucleotide (5' rN(18)-N(1.1) 3') cleavage site: (i) positions 2.1 and 12 represent a primary determinant of the selectivity at the 3' position (N(1.1)) of the cleavage site; (ii) positions 15 and 15.0 represent a primary determinant of the selectivity at the 5' position (rN(18)) of the cleavage site and (iii) the sequence of the 3-bp intramolecular stem has relatively little influence on cleavage site selectivity. Furthermore, we report for the first time that 8-17 variants have the collective ability to cleave all dinucleotide junctions with rate enhancements of at least 1000-fold over background. Three optimal 8-17 variants, identified from approximately 75 different sequences that were examined, can collectively cleave 10 of 16 junctions with useful rates of >/=0.1 min(-1), and exhibit an overall hierarchy of reactivity towards groups of related junctions according to the order NG > NA > NC > NT.
منابع مشابه
In vitro evolution of an RNA-cleaving DNA enzyme into an RNA ligase switches the selectivity from 3'-5' to 2'-5'.
Deoxyribozymes that ligate RNA expand the scope of nucleic acid catalysis and allow preparation of site-specifically modified RNAs. Previously, deoxyribozymes that join a 5'-hydroxyl and a 2',3'-cyclic phosphate were identified by in vitro selection from random DNA pools. Here, the alternative strategy of in vitro evolution was used to transform the 8-17 deoxyribozyme that cleaves RNA into a fa...
متن کاملBioinformatics Designing of 10-23 Deoxyribozyme against Coding Region of Beta-galactosidase Gene
Background: Deoxyribozymes (Dzs) can play a role as gene expression inhibitors at mRNA level. Among Dzs, the 10-23 deoxyribozyme has significant potentials for treatment of diseases. Designed Dz includes a catalytic core made of 15 deoxyribonucleotides and two binding arms consisted of 6-12 nucleotides for site specific binding to target RNA and hydrolysis. The enzyme has characteristic feature...
متن کاملA continuous kinetic assay for RNA-cleaving deoxyribozymes, exploiting ethidium bromide as an extrinsic fluorescent probe.
We describe a rapid and inexpensive method to monitor the kinetics of small RNA-cleaving deoxyribozymes, based on the exogenous fluorophore ethidium bromide. Ethidium binds preferentially to double-stranded nucleic acids, and its fluorescence emission increases dramatically upon intercalation. Thus, ethidium can be used in single-turnover experiments to measure both annealing of the deoxyribozy...
متن کاملKinetic and thermodynamic characterization of the RNA-cleaving 8-17 deoxyribozyme.
The 8-17 deoxyribozyme is a small DNA catalyst of significant applicative interest. We have analyzed the kinetic features of a well behaved 8-17 construct and determined the influence of several reaction conditions on such features, providing a basis for further exploration of the deoxyribozyme mechanism. The 8-17 bound its substrate with a rate constant approximately 10-fold lower than those t...
متن کاملIn vitro selection of DNA-cleaving deoxyribozyme with site-specific thymidine excision activity
Single-nucleotide polymorphisms, either inherited or due to spontaneous DNA damage, are associated with numerous diseases. Developing tools for site-specific nucleotide modification may one day provide a way to alter disease polymorphisms. Here, we describe the in vitro selection and characterization of a new deoxyribozyme called F-8, which catalyzes nucleotide excision specifically at thymidin...
متن کامل